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Fracture mechanics model for subthreshold 
indentation flaws: 
Part I Equilibrium fracture 
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Ceramics Division, National Institute of Standards and Technology, Gaithersburg, 
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A fracture mechanics model for subthreshold indentation flaws is. described. The model de- 
scribes the initiation and extension of a microcrack from a discrete deformation-induced shear 
"fault" (shear crack) within the contact zone. A stress-intensity factor analysis for the micro- 
crack extension in residual-contact and applied-stress fields is used in conjunction with ap- 
propriate fracture conditions, equilibrium in Part I and non-equilibrium in Part II, to determine 
critical instability configurations. 

In Part I, the K-field relations are used in conjunction with the Griffith requirements for 
crack equilibrium in essentially inert environments to determine: (i) the critical indentation size 
(or load) for spontaneous radial crack pop-in from a critical shear fault under the action of 
residual stresses alone; (ii) the inert strengths of surfaces with subthreshold or postthreshold 
flaws. The theory is fitted to literature data for silicate glasses. These fits are used to "calib- 
rate" dimensionless parameters in the fracture mechanics expressions, for later use in Part I1. 
The universality of the analysis in its facility to predict the main features of crack initiation and 
propagation in residual and applied fields will be demonstrated. Special emphasis is placed on 
the capacity to account for the significant increase in strength (and associated scatter) ob- 
served on passing from the postthreshold to the subthreshold domain. 

1. Introduct ion  
Crack initiation is an important issue in achieving 
ultra-high strengths in highly brittle solids, e.g. 
pristine optical glass fibres in telecommunications 
applications and crystalline whiskers in ceramics com- 
posites. The micromechanics of initiation are believed 
to hold the key to an understanding of the strength 
degradation suffered by such pristine surfaces in con- 
tact damage, e.g. in impact with dust particles [1, 2]. 
One of the most powerful methodologies in the study 
of contact damage is that of indentation fracture. This 
approach determines a well defined threshold in the 
damage response [3-9]: in postthreshold damage 
radial cracks extend a distance of an indentation half- 
diagonal or more from the contact damage zone; in 
subthreshold damage no such cracks are evident out- 
side the plastic impression. Subthreshold indentations 
have been used to special advantage as controlled 
flaws in the evaluation of ultra-high strength proper- 
ties of brittle materials, notably silicate glasses, under 
both inert and environmentally interactive conditions 
[3, 4, 6, 8, 9]. However, whereas the micromechanics 
of crack initiation have been unequivocally identified 
[5, 7, 10-12] and effectively modelled in terms of a 
"pop-in" instability [13-16], the subthreshold- 

strength studies to date have been largely limited to 
empirical treatments. 

In this paper we present a detailed model that 
allows for quantitative predictions of subthreshold 
flaw responses in residual and applied stress fields. The 
essence of our model is the initiation and extension of 
a microcrack from a deformation-induced crack nu- 
cleus, specifically a "shear fault", within the irrevers- 
ible contact zone [5,7, 10, 11]. Such deformation 
zones may be taken as generically representative of 
naturally occurring flaws, such as the impact damage 
sites already mentioned, internal inclusions, surface 
steps, etc. Our analysis builds on a first attempt at 
modelling the mechanics of stress-induced crack in- 
itiation and subsequent propagation described else- 
where [17]. It recognizes the discreteness of the shear 
fault as an essential element of stress concentration 
within the deformation zone, but retains the simplicity 
of conventional continuum cavity descriptions [18] 
for determining the crack extension from this fault. 
The model is universal in that it determines the evolu- 
tion of fracture at all stages, initiation and propaga- 
tion, under specified external stress and environment 
conditions. A pertinent feature is its self-consistency 
with earlier descriptions of indentation fracture in 
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small- and large-crack limits: in the near residual 
contact field, with the threshold conditions for spon- 
taneous crack initiation [13-15]; in the far field, with 
the familiar K-field response for propagating post- 
threshold cracks in the residual contact field [19, 20] 
and the strength characteristics for surfaces with 
postthreshold flaws [9, 21, 22]. 

Our model will be presented in two parts. In Part I 
we derive fracture mechanics relations for essentially 
equilibrium conditions, as pertain to vacuum condi- 
tions or non-interactive environments. The issues ad- 
dressed are: the threshold indentation size and load 
for crack pop-in; and the inert strength in both the 
subthreshold and postthreshold domains. We fit the 
K-field relations to experimental data from the 
literature for selected silica glasses, including so-called 
"normal" and "anomalous" glasses [23], and use these 
fits to adjust configurational, dimensionless shear- 
fault-microcrack parameters for each of these glasses. 
In Part II we use these "calibrated" K-field relations in 
conjunction with independently measured crack velo- 
city functions to predetermine the analogous crack 
initiation and strength (fatigue) properties in chemi- 
cally interactive environments. The model will be 
shown to possess the essential ingredients for a quant- 
itative explanation of distinctly higher strengths in the 
subthreshold (i.e. relative to the postthreshold) region; 
and, by varying the location of the nucleating shear 
fault within the contact near field, associated increases 
in the scatter. 

2. Subthreshold elastic-plastic 
identation damage in ceramics: 
background 

2.1. Experimental observations 
Earlier indentation studies on silicate glasses have 
been instrumental in revealing the nature of the irre- 
versible deformation beneath sharp point contacts 
[-5 7, 10, 11, 24]. Representative micrographs of sub- 
threshold indentations in soda-lime and fused silica 
glasses are shown in Fig. 1. Soda-lime is a "normal" 
glass, in which the deformation is volume conserving; 
fused silica is "anomalous", with a strong component 
of densification [23]. Despite some obvious differences 
in the "plastic" deformation patterns, the two glasses 
show essentially the same tendency to radial cracking 
from shear faults at or near the indentation diagonal. 
Other cracks, e.g. median [-25], lateral [26] and cone 
[23] may also be initiated, but are not of primary 
importance in the context of strength degradation. We 
note the conspicuously inhomogeneous nature of the 
shear fault, patterns within the deformation zone, char- 
acteristic spacing ~ 1 gm in soda-lime, somewhat lar- 
ger in fused silica. The more pronounced shear faults 
accommodate the bulk of the volume-conserving com- 
ponent of the indentation deformation, via failure of 
the glass structure at or close to the cohesive strength 
[5, 7, 10, 11]. 

The shear faults are the sources of stress concentra- 
tion from which the strength-degrading radial cracks 
initiate. Etching brings out the shear fault pattern 
more clearly, as seen in Fig. 2. It is evident that the 
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Figure 1 Vickers indentations in (a) soda-lime and (b) fused silica 
glass, formed at load 2 N, showing shear faults within the contact 
deformation zone and radial crack extension from these faults near 
the indentation corners. Scanning electron micrographs, showing 
half-surface and section views. Note difference in deformation zones 
below contact. After [7]. 

faults are somewhat "weak" interfaces, susceptible to 
penetration by environmental species, and thus have a 
certain crack-like quality. On the other hand, there 
must exist substantial frictional shear stresses at these 
interfaces, for otherwise the surface depression would 
recover upon removal of the indenter. 

The residual contact stresses that are typical of 
highly brittle solids [19, 20] are due at least in part to 
this irreversibility. These stresses are especially strong 
in solids with "normal" deformation behaviour. An 
important consequence of the residual stress field is 
the continued evolution of the radial cracks during the 
unloading stages of indentation [20], although in 
certain circumstances, e.g. high load [25] or in pro- 
longed contact in the presence of moisture [7] they 
may pop-in before completion of the indentation load- 
ing cycle. Note in Fig. 2b that these same residual 
stresses, in concert with chemical driving forces from 
the etching process [27], have induced subsidiary, 
post-indentation radial crack pop-in from the impres- 
sion corners. The critical conditions for radial crack 
initiation have been studied in some detail 
[13-15, 28]. There is a distinctive contact size or load 
below which pop-in does not occur. This critical size 
shows pronounced scatter, and is reduced dramat- 
ically in the presence of interactive environments 



Figure 2 Scanning electron micrographs of Vickers indentations in 
soda-lime glass, at load 4 N, (a) before and (b) after etching with 
hydrofluoric acid. Note radial cracks at indentation corners. After 
[6]. 

[-5, 7]. Delayed pop-in can also occur under the latter 
conditions at relatively low contact sizes, again in 
those solids with strong residual stress-field intensity. 
Once the crack has popped in, it can continue to grow 
stably, either in equilibrium under the action of an 
applied stress in inert environments or kinetically in 
reactive environments [19, 21]. 

Perhaps most significantly, the strength of speci- 
mens with subthreshold indentation flaws is signific- 
antly higher, and the associated scatter appreciably 
greater, than one would predict by extrapolation of 
postthreshold strength data, reflecting a profound dif- 
ference between the mechanics of initiation- and 
propagation-controlled failure [-3, 8, 22]. 

2.2. Theoretical descriptions 
Theoretical understanding of radial crack evolution 
relies on detailed knowledge of contact stress fields, 
particularly the residual components of these fields 
[20, 29]. The problem is comparatively straightfor- 
ward once the cracks have popped in and entered the 
far field. In that limit the crack propagation becomes 
insensitive to configurational details within the con- 
tact deformation zone, and the stress-intensity factor 
associated with the residual tensile stress field may be 
approximated by a classical central point-force solu- 
tion for stable penny-like cracks, KR cC P/c a/2, where c 

is the crack size and P the indentation load [-19]. The 
residual stress-intensity factor is not fully manifest 
until an elastic, compressive component in the field is 
released during withdrawal of the indenter from the 
surface [-20]; hence the above-mentioned observation 
that pop-in tends to occur toward the end of the 
contact cycle. With this residual K-field solution, the 
postthreshold strength properties in subsequent ap- 
plied tensile loading, under both inert [21] and inter- 
active [30 32] environmental conditions, are readily 
analysed. 

Corresponding stress-intensity factors for the near 
field are far more complex. Fine details of the contact 
deformation configuration become crucial elements in 
the fracture mechanics. In particular, the nature of the 
nucleation centre within the deformation zone and the 
attendant local residual stresses determine the critical 
condition for radial crack pop-in. The first attempt to 
describe the initiation micromechanics [13] con- 
sidered the residual stresses in terms of a simplistic, 
continuous elastic plastic mismatch stress field at the 
boundary of the hardness impression. Initiation was 
assumed to occur from a pre-existent flaw in this field. 
It was pointed out that for geometrically similar in- 
denters, such as the Vickers pyramid, the intensity of 
the residual field is load invariant (governed by the 
hardness), but that the stress-intensity for unstable 
crack extension from the flaw scales with the indenta- 
tion size. A critical stress-intensity factor is thereby 
achieved at a critical indentation load; thence the 
threshold. 

More general stress-intensity factor descriptions 
that combine the near-field initiation and far-field 
propagation have since been attempted [-15, 16]. 
These descriptions recognize the extreme complexity 
of the intermediate residual stress field. However, they 
make no attempt to incorporate the discreteness of the 
essential shear fault nucleus described in Section. 2.1, 
and accordingly lack the basis for a detailed micro- 
mechanical description. As mentioned in Section l, the 
present study is an elaboration of an earlier pre- 
liminary attempt [17] to redress this shortcoming. 

We now develop the theme of shear-fault initiation 
more fully. 
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Figure 3 Coordinate system for shear-fault-microcrack model, 
Vickers indentation. Fault F F, subjected to shear field (S), 
develops radial microcrack F-C in tensile field (T). 
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3. Fracture mechanics model for 
subthreshold indentat ion cracks 

In this section we present a K-field analysis of the 
Vickers-indentation shear-fault-microcrack system 
shown in Fig. 3. We begin by deriving K(c)  relations 
for the system with residual-contact and externally 
applied stresses. In accordance with the requirements 
of equilibrium fracture, we then invoke the Griffith 
plane-strain extension condition K ( c ) =  Kc = To = 
[WOE~(1-  v2)] 1/2 to determine the critical pop-in 
conditions and inert strength characteristics: To is the 
Barenblatt "modulus of cohesion"*; Wo the Dupr6 
work of adhesion in vacuum (equal to 2yB, i.e. twice 
the intrinsic surface energy of the cracked body), E the 
elastic modulus and v Poisson's ratio. In evaluating 
the equilibria it is necessary to distinguish between 
stable ( d K / d c  < 0) and unstable (dK/dc > 0) con- 
figurations [34]. 

3.1. Shear-fault-microcrack system 
In accordance with our considerations in Section. 2, 
we assume that a radial crack initiates from the edge of 
a favourably constrained shear fault near the indenta- 
tion surface diagonal, as sketched in Fig. 3. The crit- 
ical fault lies within the contact deformation impres- 
sion, and is subject to strong compressive and fric- 
tional shear tractions which prevent full restoration of 
the original surface upon indenter removal. It is an 
interface of weakness in the material (recall the pene- 
trating effect of the etchant in  Fig, 2b), and as such 
may be regarded as having the quality of a shear crack. 

We first establish a convenient coordinate system. 
The indentation has a half-diagonal length a, and the 
crack a length c, measured from the impression centre. 
For  Vickers indentations a is related to the indenta- 
tion load P by the hardness (defined here relative to 
projected, not actual, contact area) 

n = P/2a 2 (1) 

The shear fault edge is located within the impression 
by the intersection distance 13a along the half- 
diagonal; 13 is a dimensionless quantity which allows 
us to vary the origin of microcrack extension relative 
to the impression corner, i.e. Ac = c - [3a. In truth, 
the shear fault has an extremely complicated geo- 
metry, curved and inclined downward and inward 
toward the base of the subsurface deformation zone. 
In the interest of analytical simplicity we assume it to 
have a planar half-penny geometry, with surface dia- 
meter parallel to impression edge and bounded by 
impression diagonals as depicted in Fig. 3. 

A key factor in radial crack pop-in is the post- 
indentation residual stress field. This field is sketched 
as a function of r in Fig. 4, where r is the crack radius 
measured from the indentation centre. (In measuring r 
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Figure 4 Residual stress distribution for microcrack extension from 
shear fault at location 13: within shear fault interface S, stress XR 
constant (see Fig. ha); along radial crack plane T, stress cr R initially 
rising then subsequently diminishing from expanding cavity field. 

we ignore the angular kink at c = t3a as the shear fault 
deflects into the radial crack.) The stress field is separ- 
ated into two components. Frictional shear stresses 
are assumed to act radially and uniformly over the 
area of the initially constrained shear fault S (Fig. 5a) 

�9 (r) = z R = constant (0 ~< r ~< 13a) (2a) 

z(r) = 0, (13a < r) (2b) 

According to the expanding cavity models [18] sub- 
stantial compressive stresses within the plastic deforma- 
tion zone act across the fault planes; these do not 
contribute directly to the (mode II) K-field, and are 
therefore ignored i n  our analysis. Outside the 
deformation zone, however, the same models indicate 
the presence of tensile hoop stresses, which can make a 
significant contribution to the (mode I) K-field of the 
radially extending microcrack T. The hoop stresses 
remain tensile within the radial region 13 ~> e x p ( -  1/6) 
= 0.846 [18] 

or(r) = CYRIl -- 61n(a/r)] 

erR{1 -- 6[(1 -- r/a) + (1 -- r/a)2/2]}, 

(13a ~< r ~< a) (3a) 

or(r) = erR(a/r) 3, (a <~ r) (3b) 

where cr R is the peak value at r = a. Again, at 
13 < 0.846 the hoop stress ~(r)  becomes compressive; 
the fault edge then experiences no tension and is 
therefore unfavourably disposed to radial extension. 
This restriction locates the viable faults within the 
range 0.846 ~< 13 ~< 1. Strictly, Equation 3 holds only 
for cavities in infinite bodies: free-surface effects 
should be considered [16]. These effects may, how- 
ever, be conveniently incorporated into theoretically 
undetermined numerical factors, which we shall re- 
gard as empirically adjustable. 

* The Barenblatt modulus of cohesion is a material constant 

To = (2/n) lj2 P(~)d~/~ lj2 (~c ~ c) 

where p(~) is the intrinsic interplanar closure stress over the cohesion zone 0 < { ~< Zc, and ~, is a crack-plane coordinate measured back from 
the crack tip [33]. 
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Figure 5 Shear stress distribution over fault plane, (a) from residual 
frictional stresses in contact field and (b) from subsequently applied 
tensile stresses normal  to radial crack plane. Shear stresses reinforce 
at edge F", from which the tensile microcrack ultimately extends. 

Note again that Equations 2 and 3 refer to post- 
indentation residual stresses: we indicated in Section 
2.2 that the stress field during actual contact contains 
an additional, reversible, compressive component. 
Such a component may be simplistically thought of as 
suppressing the in-contact driving force for crack 
growth. This will become an especially important 
consideration when we deal with kinetics in Part  II. 

For indenters of fixed profile, e.g. Vickers pyramid, 
the intensity of the stress field is governed uniquely by 
the hardness defined in Equation 1, i.e. ~ oc H, 
cy R oc H, and is thereby contact-size invariant 
(geometrical similarity) [13, 15]. 

3.2. Residual K-field and critical 
pop-in conditions 

Now we integrate the residual stresses over the crack 
area using Green's function formulations for penny- 
like cracks to obtain a post-indentation stress- 
intensity function, KR(C). These integrated functions 
are available from literature sources. There are two 
components, the first from the shear stresses in Equa- 
tion 2 and the second from the tensile stresses in 
Equation 3. 

(i) Shear component, K n. The radially symmetrical 
uniform stress x R in Fig. 5a makes a mode II contribu- 
tion to the K-field at the surface intersection points F 
in Fig. 3. For  subsequent microcrack extension along 
the radial direction we have [35] 

K"(c ,  a, 9) = qlsxRCl/z { s i n - l ( 9 a / c )  

-- (ga/c)[1 , (9a/c)2]}, (c >>. 9a) (4) 

with q~s a dimensionless geometrical factor. Note at 
c >> 9a that K~(c)  occ -s/z,  i.e. a short-range 
contribution. 

(ii) Tensile component, K I.  The tensile stress field 
makes a mode I contribution, calculable from the 

standard integral [35] 

K~(c ,a ,  ~) = ( ~ / c  1/2) r~ ( r )d r / (c  2 - r2) 1/2' 
a 

( c / >  9a )  (5) 

with q/R T another dimensionless factor. This integral 
may be subdivided into two parts, according to 
whether the crack extends within the domain of Equa- 
tions 3a or 3b 

K1R(C, a, ~) = ~TCYRCl/2{6(c/a)[Tz/2 -- s i n - l ( ~ a / c ) ]  

-- [1 -- (~a/c)2]l /a(8 + 2ce/a 2 

-- 6[3 + [3z)}, (13a ~< c ~< a) (6a) 

G ( c ,  a, 13) = - 

+ 6 ( c / a ) [ s i n - l ( a / c ) -  s in - l (Oa /c ) ]  

+ (1 - a2/c2)1/2(3 + 2c2/a 2) 

- [1 - (~a/c)2]1/2(8 + 2c2/a2 

- 69  + 92)}, (a ~< c) (6b) 

At c >> a, K~(  c) ~ ~ITt~Ra2/c 3/2, which is the conven- 
tional limiting crack-size dependence for centre- 
loaded indentation cracks [19, 203. 

These lengthy expressions may be reduced by mak- 
ing use of the geometrical similarity of the residual 
stress field intensity mentioned in Section. 3.1 above. 
Accordingly, we define the dimensionless coefficients* 

a s = ~SzR /H  = constant (7a) 

a T = ~TR(YR/H = constant (7b) 

In the same spirit, we define the separable crack-size 
function 

i S ( c / a ,  9) = 2(c /a)  ~/2 { s i n - l ( g a / c )  

- ( f ~ a / c ) [ 1 -  (9a/c)2]} ,  (c >~ 9a) (8) 

for the shear component of the field, and likewise 

iT (c /a ,  ~) = (c/a) 1/2 {6 (c /a ) [~ /2  -- s in- l ( f~a/c)]  

-- [1 -- (~a/c)2]1/2(8 + 2c2/a 2 

-- 6 9  + [32)}, (9a ~< c ~< a) (9a) 

iT(c~ a, 9) = (c/a) 1/2 {(a/c)Z(1 -- aZ/cZ) 1/z 

+ 6(c/a) [sin- l (a /c)  

-- s i n - l ( 9 a / c ) ]  

+ (1 -- a2/c2)1/2(3 + 2c2/a 2) 

--  [1 -- ( 9 a / c ) 2 ] 1 / 2 ( 8  + 2 c 2 / a  2 

- 613 + ~2)},  (a ~< c) (9b) 

for the tensile component. The crack-size functions 
f S ( c / a )  a n d f ~ ( c / a )  in Equations 8 and 9 are plotted 
in Fig. 6 for the mean value [3 = 0.923 within the 
allowable range 0.846 ~< 9 ~< 1. 

Then from the additive property of mechanical- 
energy-release rates (G oc K 2) for different modes 

* The limiting condition for Equat ion 6b at c >> a may be combined with Equations 1 and 7b to obtain Kl(c )  = ~ I T t J R a 2 / c  3/2 = cz~P/2c 3/2. 
This result is of the same form as traditionally used in indentation fracture [19, 20], K R = z P / c  3/z, whence we identify ~( = ct~/2. 
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Figure6 Plot of crack-size weighting functions in Equations 8, 9, 15 
and 16, for 13 = 0.923. 

[36], we may write the net residual stress-intensity 
factor 

KR(c,a,  [3) = [(K~) 2 + (K~)2] 1/2 

= HaX/Z{[~TfT(c /a ,  13)] 2 

+ [ ~ s f S ( c / a  ' 1 3 ) ] z } 1 / 2  (10) 

The indentation-load dependence now enters solely 
through the multiplicative factor a ~/2. Normalized 
plots of KR(C/a) /Ha* 1/2 at fixed ]3 are given in Fig. 7 
for indentation sizes a a < a 2 < a 3 < a+ (with a* the 
critical indentation size for initiation, see below). 
There are two principal branches, labelled 1 and 2 in 
the plot, with equilibria at c I and c2: the first with 
dKR(c ) /dc  > 0 is an unstable branch; the second with 
dKR(c) /dc  < 0 is stable; a subsidiary branch labelled 
0 is to the left of the secondary minimum at c = q < a. 

We emphasize once more that the formulation cul- 
minating in Equation 10 pertains to the residual field. 
Recall from Sections 2.2 and 3.1 that the crack driving 
forces during indentation are suppressed by an elastic 
compressive component, in which case we may tenta- 
tively take K R = 0 up to the point of indenter removal. 
We shall need to re-examine this premise when we 
consider the possibility of chemically assisted in- 
contact crack initiation in Part II. 

The configuration for spontaneous, post-indentation 
pop-in is represented by curve a a in Fig. 7. The min- 
imum at c~ on this curve satisfies the condition for 
unstable equilibrium, i.e. KR(C~/a* ) = K c = To (hori- 
zontal broken line), d 2 K / d c  2 > 0, where the asterisk 
denotes the critical point. Inserting this requirement in 
Equation 10 and invoking Equation 1, we obtain 

a* = O ( T o / H )  2 ( l la)  

P* = 2 0 T ~ / H  3 ( l lb)  

where O = 1/{[~ffR(C*/a, [3)] 2 + [~SfiR(C*/a, 13)]2} ~__. 
constant. This is the result derived in an earlier theory 
of crack initiation [13]. We may deduce from Fig. 6 
t h a t f ~ ( c * / a )  < f S ( c * / a ) ,  i.e. the critical condition is 
dominated by the shear-fault component of the re- 
sidual stress field. At KR(C ~/a*) = To the crack arrests 
at stable branch 2. 

,', a4., 
_o 

1 
C;  13a 

I 
I 

log (c/a} 

Figure 7 Variation of residual normalized stress-intensity factor 
with normalized crack size, for fixed ]3. Branches 0 and 2 are stable, 
branch 1 unstable. Equilibrium crack length (satisfying K = 
Kc = To) occur at c o and c~ (not shown), c2. Note min imum at Cl 
(co ~< q ~< c~). The asterisk denotes critical configuration. Curves 
represent indentation sizes: as,  subthreshold (zero potential for 
pop-in); a2, subthreshold (potential for subcritical p o p - i n -  see 
Part II); a 3 = a*, threshold; a4, postthreshold. 

3.3. Appl ied  s t ress  and  inert  s t r e n g t h  
Consider now the response of an equilibrium 
(environment-free) indentation flaw system to an ex- 
ternally applied tensile stress, OA. For  simplicity we 
suppose the applied stress to act normal to the radial 
crack plane. Let us determine the "failure" conditions 
for the indentation flaw to become unconditionally 
unstable. 

As in the previous subsection, there are two contri- 
butions to the applied stress-intensity factor, one from 
resolved shear stresses acting on the deformation-fault 
plane and the other from the tensile stress acting 
directly on the radial-crack plane. 

(i) Shear component, K~.  The resolved shear 
stresses z,(oc erA) act uniformly but parallel to the 
specimen surface, reinforcing the residual shear stres- 
ses at the tensile corner, Fig. 5b. This makes another 
mode II contribution to the K-field at the specimen 
surface [35, 37] * 

Kid(c, a, [3) = ~Szac l /2{[1  - (1 - (13a/c)Z) ~/2] 

- -  [ v / ( 2  - v ) ] [ 1  - -  (1 - -  (13a/c)2)3/2]} 

(c ~> 13a) (12) 

(ii) Tensile component, K~A. The applied tension 
manifests itself as a mode I component, again calcu- 
lable from the standard integral [35] 

KIA(C,a, [3) = (t~A/C a/2) rCrAdr/(c 2 -- r2) 1/2 
a 

= ~,CrACl/2[1 -- ([3a/c)2] 1/2, (c >1 13a) (13) 

Note that at c >> a, K I ( c ,  a, [3) ~ ~TAOACl/2, i.e. inde- 
pendent of a or [3, which is the familiar result for 
cracks in uniform tensile fields [36]. 

We may reduce the expressions by defining the 
dimensionless coefficients 

o~ s = ~ s ~ ~  = constant (14a) 

s T = ~ a ~  = constant (14b) 

* And a mode III below the surface, neglected here because the net shear component  of the K-field is max imum at point F" in Fig. 5a and b. 
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in analogy to Equat ion  7, where cy ~ and ro (oc cr ~ are 
reference subthreshold inert strengths to be defined 
later in this subsection. Again, we write separable 
crack-size functions for the shear componen t  

f S (c /a ,  ~) = (c/a)*/2({1 - [1 - ([3a/c)231:2 } 

- Iv/(2  - v) ]{1 - [1 - ([~a/c)213/2}) 

c >~ [3a 

and the tensile componen t  

f ] ( c / a ,  [3) = (c/a) 1/2 [1 

(15) 

- -  (~a/c)2] 1/2 c >/ [sa 

(16) 

in analogy to Equat ions 8 and 9. Plots of these crack- 
size functions are included in Fig. 6. 

The total stress-intensity factor for superposed re- 
sidual and applied mode  I and II  fields is therefore 
[36] 

K = [ ( K  I + Kk)  2 + (K~ + K~)2] 1/2 (17) 

With the equality 

~ / ~ o  = ~ / ~ o  (18) 

Equat ion  17 becomes 

K(c,  a, [3, CYA) = Hal /2{[~r  fT(c/a,  [3) 

+ (Cra/~~ [3)3 2 

+ [~s fS(c /a ,  [3) 

+ (CrA/UO)~SfSA(c/a , [3)]2}1)2(19) 

Plots of  K ( c / a ) / H a  1/2 are shown at different ap- 
plied stress levels cy A in Fig. 8. No te  the advent  of a 
second unstable branch, 3, with a corresponding equi- 

i =0 

I 

log (c/el 

Figure 8 Variation of total stress-intensity factor with crack size, for 
fixed 13. Branches 0 and 2 are stable, 1 and 3 unstable. Equilibrium 
crack lengths CM and c3 at K = Kc = To indicated (other equilib- 
rium lengths at Co, % c~ and c2 not shown). Plots illustrate different 
strength regions: (a) postthreshold, (b) subthreshold with activated 
failure, and (c) subthreshold with spontaneous failure. Each dia- 
gram shows curves for three fixed applied stress levels. 

librium point  c = c3 at K = To. Three possible fault 
instability configurations are represented. 

(a) Postthreshold strength, Fig. 8a. In this case the 
initial shear fault configurat ion is postcritical; a > a*, 
the crack pops in from unstable branch 1 to stable 
branch 2 before application of the external tensile 
load, i.e. at cy n = 0. Subsequent loading, ~A > 0, then 
causes the crack at c2 to grow stably in equilibrium at 

K ( c 2 ) = K c =  To 

K(c, a, [3, erA) = H a l / E { [ ~ f ~ ( c / a ,  [3) 

+ (CrA/Cro)a~f~(c/a, [3)]2 

+ [~s fS (c /a ,  [3) + (%toy ~ 

x ~ s f S ( c / a ,  [3)]2} 1/2 = To (20) 

At cr A = ~M, C = C 2 = C 3 = C M, as determined by the 
condit ion dK(c) /dc  = O, dZK/dc  z > 0, the system be- 
comes uncondit ional ly unstable. Failure is then said 
to be propagation-controlled. 

We may  note f rom Fig. 6 that  it is the tensile 
components ,  i.e. the terms in f ~  and f~ ,  that  control  
this critical condition. Inserting c > a in Equat ions  9 
and 16, and recalling Equat ion  18, the instability 
requirement in Equat ion  19 yields 

cr~ = (3a~cr~ (21a) 

CrM = ~~ (21b) 

These are of essentially the same limiting form as the 
equations derived previously [19] for post threshold 
indentat ion cracks. Al though not  exact, they serve as a 
useful first approximat ion  for later data  analysis. 

(b) Subthreshold strength, activated failure, Fig. 8b. 
The initial shear fault configurat ion is subcritical, i.e. 
a < a*;  but only just, such that, when the crack is 
induced to pop-in from q at intermediate applied 
stress ~A, it arrests at c = c2 on branch 2. Fur ther  
loading to ~A = CYM is then required to grow the crack 
at K(c2) = To to CM, in which case the strength is given 
by the propagat ion-control led  formulat ion described 
in case (a). 
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(c) Subthreshold strength, spontaneous failure, 
Fig. 8c. The initial shear fault configuration is again 
subcritical, but at a < a*.  When the system at c = c~ 
becomes unstable at critical stress (3" A = (~I the min- 
imum between branches 2 and 3 lies either above the 
K - -  T o line or disappears altogether, so that exten- 
sion is unlimited 

K(c,, a, 13, ~,) = Ha'/Z{[o~f~(c, /a,  ~) 

+ (Cyl/(:y~ 13)] z 

+ [czsfSR(c,/a, ~) 

+ ((:y,/~~ 13)]2} '/z = T O 
(22) 

The failure is now initiation-controlled. 

The subthreshold strength (yi may now be deter- 
mined as a function of indentation size a by direct 
inversion of Equation 22 to obtain (~](a). From Fig. 6 
we see that it is the shear c0mponen t s f  s a n d f  s that 
control the strength in this region. 

A functional plot of the critical applied stress 
against indentation size a, or alternatively against load 
P from Equation 1 is presented in schematic form in 
Fig. 9. From the above description it is clear that the 
strength at any given value of a will be determined by 
whichever of (~M and (~ is the higher, as indicated by 
the composite solid curve. Thus the postthreshold, 
propagation-controlled strength region, where Equa- 
tion 20 has its instability, lies to the right of the point 
((~*, a *). Similarly, the initiation-controlled, spontan- 
eous subthreshold strength region defined by Equa- 
tion 22 lies to the left of the point ((7 ~ a~ This point 
defines the reference quantity c~ ~ introduced earlier in 
Equation 14. The activated subthreshold region, 
where the radial crack pops in en route to propaga- 
tion-controlled failure, falls within the intervening 
range a ~ < a < a*. 

conditions. These data are available for three silicate 
glasses: one normal, sodaqime; and two anomalous, 
fused silica and borosilicate (Table I). 

4.1. Critical condition for radial crack pop-in 
Consider first experimental data for radial crack pop- 
in from Vickers indentations inpolished and annealed 
glasses, under the exclusive action of the residual 
contact stresses, in inert (dry nitrogen gas) environ- 
ment [5, 7]. In normal (soda-lime) glass the pop-in 
event is well defined: below the critical indentation 
size there is no perceptible sign of radial crack 
extension outside the hardness impression (c* = 
13a + Ac, Ac ~ a); above the critical size the radial 
cracks are clearly ;visible (typically, c* ~ 2 to 3 a). In 
anomalous (fused silica and borosilicate) glasses the 
pop-in is much less pronounced (c~' < 2a), with rela- 
tively small radial crack dimensions. 

The KR(C) curves in Figs 10 to 12 for the three 
glasses are fits of Equation 10 to these data. In these 
figures the full curves represent the fitted function at 
the critical indentation size a* and pop-in crack di- 
mension c*, measured under environment-free condi- 
tions [26,38,39], for 13 = 0.923. The horizontal 
broken line on this p lo t  indicates the literature value 
of K c = To. To obtain the fits the parameters a s and 
~ are adjusted iteratively to satisfy two extreme re- 
quirements: that KR(C*) = To, i.e. the subsidiary min- 
imum at c* coincides with the horizontal broken line 
for equilibrium extension; and that KR(C*) = To, i.e. 
the pop-in length c~ corresponds to the measured 

TABLE I Values ofmaterial parameters for silicate glasses used in 
this study. Data from 1-23]. 

E H ~o 
(GPa) (GPa) (MPa m 1/2) 

4. C o m p a r i s o n  o f  theory and experiment 
Let us now fit the theory to existing data for crack 
initiation threshold and strength under inert testing 

Soda-lime 70 5.5 0.75 
Fused silica 76 7.0 0.79 
Borosilicate 64 6.1 0.76 

log indentation load P 

o-- 

I I 
I \  ' I 

I I I 
I I I 

log indentation half-diagonal,  a 

Figure 9 Schematic plot of inert strength ~ against indentation size 
a, for the three regions (a), (b), (c) defined in Fig. 8. Points (c*, a*) 
and (a~, a ~ delineate the three strength regions defined in Fig. 8. 
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Figure 10 Plot of KR (c) for soda-lime glass. Full curve is for 
13 = 0.923, adjusted to correspond to critical indent size 
a* = 42.6 ~tm (P* = 20.0 N) [38] and pop-in length c* = 120 ~tm 
[20]. Broken curves are for 13 = 0.846 (upper) and 1.0 (lower), 
corresponding to predicted scatter a* = 36.7 to 66.1 ~tm (P* = 14.8 
to 48.0 N). 
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Figure 11 Same as Fig. 10, but for fused silica. Full curve is for 
critical indent size a* = 32.7 gm (P* = 15.0 N) 1-38] and pop-in 
length c~ = 59.0 gm [8]. Broken curves correspond to predicted 
scatter a* = 26.0 to 52.0 lam (P* = 9.5 to 37.9 N). 
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Figure 12 Same as Fig. 10, but for borosilicate glass. Full curve is 
for critical indent size a * =  35.1 gm ( P * =  15.0N) and pop-in 
length c* = 67.5 gm [8, 22]. Broken curves correspond to predicted 
scatter a* = 28.3 to 55.6 gm (P* = 9.7 to 37.7 N). 

4.2.  Inert  s t r e n g t h  
Now consider experimental inert strength data for the 
three silicate glasses, in both postthreshold and sub- 
threshold regions I-3, 8, 17, 22, 30]. The postthreshold 
data are from Vickers-indented rod specimens. Data 
from subthreshold indentations are taken on heavily 
etched and annealed rods and fibres, so as to eliminate 
competing natural flaws. 

These strength data are plotted in Figs 13 to 15 as 
function of indentation size a or load P as mean and 
standard deviation points. The full curves are fits of 
the functions cr M evaluated from Equation 20 and cq 
from Equation 22 for 13 = 0.923, using the calibrated 
parameters o~ s and ~ from Section 4.1 and adjusting 
m s and ~ ,  along with o ~ (Again, in making these 
adjustments it is useful to obtain first approximations, 
e.g. Equation 21b for 0~, before iterating.) Values of 
at,,,,s ~AT and cr ~ are included in Table II. The general 
features of the earlier schematic Fig. 9 are evident in 
these fits. 

Comparative plots of the inert strength function for 
13 = 0.846 and 1.000 are included in Figs 13 to 15. The 

P (N) 

10-2 10-1 10  0 10  1 10 3 
10 4 I I I 

~103- ~-_ 1o-' -~~. : ~ ~ ,  
101 t 
1 0 ~  L ~ ~ , , , , , t  . . . . . . .  ,I 

1 10  1 0 0  

a (la, m) 

T A B L E  II Values of adjustable ~ coefficients and reference 
strength ~o from data fits for three silicate glasses studied. 

~ ~'~ ~I ~ o ~ 
(MPa) 

Figure 13 Inert strength plotted against indentation half-diagonal 
(lower axis) or contact load (upper axis) for soda-lime glass. Experi- 
mental data points are means and standard deviations [8, 22, 30]: 
postthreshold, closed symbols; subthreshold, open symbols. Curves 
are fits to theory, for 13 = 0.923 (full), and 13 = 0.846 and 1.000 
(broken). 

Soda-lime 0.0984 0.0072 0.0067 0.0235 56.5 
Fused silica 0.0524 0.0073 0.0084 0.0252 95.3 
Borosilicate 0.0606 0.0077 0.0107 0.0259 111.7 

value. (In making these adjustments it is useful to 
recall that starting values of the ~ terms in the iter- 
ation may be obtained from the first approximations 
f~ (c* /a ,  13) = o,fSR(c*/a, 13) = 0, alluded to in Section 
3.2.) The comparative "strength" of the pop-in event in 
normal glasses is evident in the KR(c) plots. Values of 
the calibrated ~ parameters are shown in Table II. 

Included as the dashed curves in Figs 10 to 12 are 
companion plots for [3 = 0.846 and 1.000, using the 
same ~ parameters but adjusting a* to meet the re- 
quirements for pop-in. Such a plot gives an indication 
of the potential scatter in the critical indentation size 
and in the attendant radial crack pop-in length. 

P (N) 

10-2 10-1 10  0 10  1 10  2 10 3 
10  4 F I l [ 

10  3 ~ ' * * * ~ .  . ~,~,~ 
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r -  

o~ 10 2 

I 
101 Q* 

10  0 J J , , , , , , I  , , , , , , j , j  , , 
10  1 0 0  

a ( iLm) 

Figure 14 Same as Fig. 13, but for fused silica. Data from refs [6, 8] 
(circles) and [-17] (triangles). 
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Figure 15 Same as Fig. 13, but  for borosi l icate glass. D a t a  f rom 
[3, 223 . 

spread in the curves is substantially greater in the 
subthreshold than the postthreshold regions, reflect- 
ing the experimental standard deviation error bars, 
although the correspondence between experimental 
and predicted spreads is by no means exact. 

Appropriate K(e) functions in Equation 19 are 
generated for soda-lime glass in Fig. 16, for selected 
indentation sizes in the postthreshold, subthreshold- 
activated and subthreshold-spontaneous regions. The 
plots include curves at zero, intermediate and critical 
applied stress. These diagrams usefully indicate the 
evolution of the instability configurations in the 
different regions. 

One point concerning the distinction between the 
inert strength regions delineated in Fig. 9 requires 
elaboration. Some of the postthreshold data in Figs 13 
to 15 extend into the subthreshold domain at a < a ~ 
This reflects the experimental impracticality in main- 
taining strict equilibrium testing conditions through- 
out the complete indentation-strength testing se- 
quence. In reality, trace amounts of moisture may 
cause radial cracks to pop-in after indentation but 
before strength testing, with increasingly smaller delay 
time the closer one approaches the critical indentation 
size a* (delayed pop-in, see Part II). Indeed, for this 
reason it is difficult to get subthreshold strength data 
at all for values of a close to a ~ Accordingly, those 
points along the extended postthreshold curve are not 
representative of a truly inert-environment history, 
and are therefore included in the (extrapolated) post- 
threshold rather than the subthreshold curve fits. 

5. Discussion 
We have outlined a fracture mechanics model that 
allows a semi-quantitative analysis of the more im- 
portant elements of mechanical behaviour of glasses 
with indentation flaws, namely the critical conditions 
for radial crack pop-in and the strength in the sub- 
threshold region. Thus far we have considered only 
inert testing conditions, although, as we shall see in 
Part II, our formulation is readily adaptable to 
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kinetic, environment-sensitive conditions. In deriving 
this model we have preserved the crux of earlier 
continuum-based treatments of postthreshold 
indentation cracks, yet have built an essential element 
of discreteness into the subthreshold micromechanics 
by assuming the radial cracks to generate from shear 
faults within the contact zone. In this way we have 
developed a universal formalism which tends asymp- 
totically in limiting cases of very small and very large 
cracks to previously well defined relations for crack 
propagation and initiation. 

As indicated in Sections 2 and 3, the residual stress 
term is crucial in the micromechanics of crack initia- 
tion. In our model the component of the near-field 
residual stress that primarily determines the critical 
indentation size is that associated with frictional trac- 
tions over the shear-fault interface, i.e. the a s term in 
Equation 10. This frictional element is missing from 
earlier models of crack initiation [13, 14, 16]. The 
pop-in length, on the other hand, is primarily deter- 
mined by the tensile component arising from 
elastic-plastic mismatch stresses, the a T term in 
Equation 10. It is the far-field asymptotic form of this 
component that is considered in most treatments of 
crack propagation. We reemphasize that the root 
cause of the initiation threshold, as expressed by 
Equation 11, lies in the scaling of the KR-field with the 
fault dimension (a) and not the stress intensity (H) in 
Equations 10 and 19 [13-15, 28]. 

Perhaps the most important result of the model is 
its capacity to account for the different inert-strength 
responses in the postthreshold and subthreshold re- 
gions. The subthreshold strengths are higher than one 
would expect from simple extrapolation of post- 
threshold data because, at low indentation sizes (in the 
spontaneous failure region a < a o), the applied stress 
to initiate a radial crack exceeds the stress to pro- 
pagate that crack to instability, i.e. cy~ > cy~ in Fig. 9. 
The model also explains, at least in part, why the 
scatter in strengths is dramatically higher in the sub- 
threshold than in the postthreshold region: namely 
the extreme sensitivity of the KR-field to the fault 
location in the inhomogeneous near-contact stress 
field at very small crack sizes. Our analysis thus offers 
a self-consistent description of the transition from 
postthreshold to subthreshold strength regions as the 
indentations are reduced in size below the critical 
value. 

An alternative graphical scheme for distinguishing 
the different regions of strength behaviour is to trans- 
pose Equation 19 and solve directly for the function 
CYA(e) at equilibrium, K = K c = T o. We plot the resul- 
ting function at indentation sizes al < a2 < 
aa < a4 < a5 for soda-lime glass in Fig. 17. Instabili- 
ties are indicated by arrows in the diagram. The 
strength in each of these curves is determined by the 
principal maximum. Postthreshold failure configura- 
tions are apparent at the higher values of a, sub- 
threshold at the lower values (cf. Fig. 16): a5 > a* 
(P5 > P*), the radial cracks pop-in spontaneously at 
cy A = 0, and thereafter grow up the second stable 
branch of the ~A(C) curve to instability at (~A = ~M; 
a4 = a* (1~ = P*), the indentation is at threshold, so 
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that the first maximum is at o A = 0, whence an in- 
finitesimal applied stress is sufficient to cause pop-in 
to the second stable branch, leading to a A = a m as 
previously; a 3 = a ~ < a* (P3 = po < p , ) ,  the condi- 
tions for pop-in over the first maximum and propaga- 
tion over the second maximum coincide, and the 
strength is a a ---- a M = a ]  = o ~  a 2 < a ~ (P2 < p O ) ,  

the cracks become unstable at aa  = a~ > a ~ and 
proceed to failure without "recognizing" the second 
maximum; al ~ a ~ (Pt ~ pO), the initiation instabil- 
ity is even more pronounced, and the strength is again 
determined by a A = o z. 
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Figure 17 Plot of stress o A for equil ibrium crack extension as a 
function of crack length c in soda-lime glass for five values of a, 
13 = 0.923: al = 4.8 rtm (P1 = 0.25 N); a2 = 6.7 ~tm (P2 = 0.50 N); 
a 3 = a ~ = 34.4 p.m (P3 = p o  = 13.0 N); a4 = a* = 42.6 pm (P4 = 
P* = 20.0N);  as = 52.2~tm (Ps = 30.0N). Arrows  indicate 

instabilities. 

Figure 16 Plots of K(c) in Equat ion  19 for soda-lime glass, for 
three regions: (a) postthreshold,  a = 5 2 . 2 1 x m  ( P = 3 0 . 0 N ) ,  
a m =  4 3 M P a ;  (b) subthreshold activated, a = 36 .9gm (P = 
15.0 N), a M = 54 MPa;  (c) subthreshold spontaneous,  a = 4.8 gm 

(P = 0.25 N), al = 982 MPa.  ( cf. Fig. 8.) 

The reader will note that to obtain the theoretical 
fits we have had to adjust four parameters in the 
K-field relations, the ~ terms. Many geometrical un- 
certainties in the analysis are implicit in these terms. 
For  instance, the shear fault and the ensuing radial 
crack have been assumed to have a somewhat ideal- 
ized penny-like geometry. Then, in using planar crack 
formulae to calculate stress-intensity factors we have 
ignored the fact that the radial crack extends at an 
abrupt angle from the edge of the shear fault, inevit- 
ably with mode III as well as mode II components 
along the extending front. With our simplistic fault- 
cavity representation of the contact field, we have 
assumed somewhat questionable spatial stress dis- 
tribution functions (Fig. 4). In this context, the "agree- 
ment" between experimental data and theoretical fit 
can hardly be taken as proof of validity of the model: 
for that we must rely on the micrographic evidence 
described in Section 2.1. The model does, nevertheless, 
describe all the essential characteristics of the critical 
pop-in and ensuing strength phenomena, subthres- 
hold and postthreshold, associated with indentation 
flaws. 

Notwithstanding these qualifying remarks, it is in- 
teresting to compare quantitative features of the crit- 
ical KR-field plots in Figs 10 to 12 for the three glasses. 
The pop-in lengths are seen to be relatively small for 
the fused silica and borosilicate, reflecting lower values 
of ~R T in Table II. This is consistent with the fact that 
fused silica and borosilicate are anomalous, with cor- 
respondingly smaller residual stress intensities, as 
pointed out in Section 2. With due allowance for 
quantitative variations of this kind in the residual field, 
the theory describes the inert strength characteristics 
for all three glasses in the subsequent applied field, 
Figs 13 to 15. There is therefore an implied generality 
in the analysis, so that extension to any other highly 
brittle material which exhibits the same kind of 
shear-fault-radial-crack process, e.g. quartz [7] and 
sapphire El2], may be envisaged; in such crystallo- 
graphic materials, however, anisotropy in the deforma- 
tion and fracture responses could have a profound 
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influence on the fault-microcrack configuration that 
governs the initiation. 

The formulation with its calibrated ~ parameters is 
now well placed to deal with another important aspect 
of crack pop-in and strength behaviour, that due to 
rate-dependent growth in an interactive chemical en- 
vironment. We have already noted in Figs 13 to 15 
one virtually unavoidable consequence of such slow 
crack growth, namely the tendency for the strengths of 
specimens exposed to moist environment in the inter- 
val between indentation and strength testing to under- 

g o  a premature degradation from subthreshold to 
postthreshold levels for flaws close to the critical con- 
tact size. This transition reflects the diminishing en- 
ergy barrier to crack pop-in as the indentation size 
increases toward the critical value a*, e.g. as one 
approaches a4 in Fig. 17. From an engineering design 
standpoint, such a premature loss in strength could be 
highly dangerous. We shall explore the role of slow 
crack growth in detail in Part II. 

6. Conclusions 
The conclusions are as follows. 

(1) A shear-fault-microcrack model of crack initia- 
tion and propagation for equilibrium indentation frac- 
ture conditions has been constructed. 

(2) K-field expressions for the system have been 
derived by treating the deformation fault within the 
contact zone as a penny-like frictional shear crack 
with subsequent radial extension in residual and ap- 
plied tensile stress fields outside the contact zone. 

(3) Limiting forms of the equilibrium K-field equ- 
ations reduce to results from earlier indentation frac- 
ture studies: for the residual stresses, in the near field 
to the critical contact size (or load) for initiation and in 
the far field to the familiar P/c 3/2 relation for propaga- 
tion; for the far-field applied stresses to previous post- 
threshold inert-strength relations. 

(4) The theory has been fitted to data for the critical 
indentation size for radial crack pop-in, and for 
corresponding strengths in the subthreshold and post- 
threshold domains, for soda-lime, fused silica and 
borosilicate glasses in inert environments. 

(5) The fits in (4) have been used to "calibrate" 
adjustable parameters in the K-field relations, for 
application in Part II. 
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